Support United Paizo Workers! Click here for more details!
GM > Starship > Space Hazards
Starfinder Starship Operations Manual p.134
Innumerable threats lurk in the inky spaces between the stars. This section addresses myriad dangers, from potentially civilization-ending events to more localized problems that might affect only a single starship combat. Each subsection presents a particular kind of stellar phenomenon and how you can include them in your game. Many of the hazards included here list damage or attack bonuses that scale based on starship tier—these are to help you provide balanced encounters for your PCs, but you can also set numbers that are higher or lower to better fit the actual danger.
Space contains untold billions of threats, ranging from the inexplicably vast to the unexpectedly deadly. Some are legendary in their lethality, while other unidentified anomalies continue to vex even the most accomplished scientists. Thankfully, space is big enough that most pilots can fly around these threats—that is, unless pursuing pirates, gravitational anomalies, or other dangers turn such caution into a luxury!
Though they’re one of the most mundane aspects of space, chunks of floating
rock can nonetheless have a dramatic impact on starship operation and combat.
Even clouds of small pebbles can jam engines, throw weapon systems out of alignment,
and disrupt sensitive sensor equipment. Larger asteroids, especially with significant
velocity, can obliterate smaller starships and cause significant damage to larger
ones. The biggest asteroids blot out entire hexes of space, creating obstacles
that starships must weave through but can use as cover during combat. Large,
stationary asteroids also make good locations for orbital weapon platforms.
Asteroids generally take up 1 hex on the grid; larger asteroids can be represented
by filling two or more adjacent hexes. Traveling through an asteroid’s space
is generally possible, but a starship risks taking damage when it does so. A
starship’s direct-fire weapons can’t pass through an asteroid’s space, but tracking
weapons can move to avoid striking one.
When either a starship or an asteroid
enters a hex occupied by the other, the pilot must attempt a Piloting check
(DC = 10 + 1-1/2 × the starship’s tier), with the ship taking 4d6 damage in
a random quadrant and the ship’s facing changing by 1 turn in either direction
(determined randomly) on a failure. Moving asteroids deal an additional 1d6
damage per 2 hexes they move on the round that they collide, and the DC of the
Piloting check to avoid a collision with a moving asteroid increases by 5.
If a ship collides with an asteroid or hits it with a starship weapon attack
(AC 5 and TL 5) that would deal at least 1 Hull Point of damage, that hex of
the asteroid is destroyed and all adjacent hexes are sprayed with rock fragments,
dealing 4d4 damage unless an affected starship’s pilot succeeds at a Piloting
check to avoid the debris (DC = 10 + 1-1/2 × the starship’s tier).
Comet: This chunk of icy mass flies through space, leaving
a trail of ice and gas behind. You can simulate a comet with a single large
asteroid moving across the grid over the course of several rounds, trailed by
a micrometeoroid cloud (see below) that represents the icy fragments making
up the comet’s tail.
Fast-Moving Asteroids: These large
groupings of asteroids travel together, usually caused by an explosion, a collision
of larger asteroids, or a massive gravitational body pulling them out of orbit.
At the beginning of combat, these asteroids start on one edge of the map and
take up 1 hex each; place the asteroids farther apart than if you were using
stationary asteroids. At the end of each helm phase, move each asteroid across
the map in the same direction. Asteroids should always move in a straight line
at a consistent speed, but they don’t all need to move at the same speed. For
a sustained asteroid storm, randomly place new asteroids at the edge of the
grid after moving the asteroids that are already on it.
Magma-Filled
Asteroid: This asteroid forms when a globule of molten rock is exposed
to the void of space, and its liquid magma core becomes encased in an obsidian
shell. When a starship takes damage upon colliding with such an asteroid, the
shell cracks, releasing roiling magma into all adjacent hexes. The colliding
starship and all starships within 1 hex of the asteroid take 4d8 damage to a
random quadrant. In addition, a starship can shoot at a magma-filled asteroid
(AC 5 and TL 5); a hit with any weapon that would deal at least 1 Hull Point
of damage punctures the obsidian shell and imparts the shot’s momentum, causing
magma to hurl violently into space and deal 4d8 damage to starships in adjacent
hexes (instead of the normal 4d4 damage). Exceptionally hot asteroids could
deal even greater amounts of damage upon impact or when destroyed, whereas asteroids
whose interiors have lost most of their heat over time typically deal less damage.
Massive Asteroid: A massive asteroid can be represented by
10 or more individual asteroids or by simply filling up an entire section of
the combat grid with the asteroid. Asteroids of this size are impassible—starships
can’t enter their space— so they’re useful as outer bounds to a battlefield.
Space battles over the entrance to an asteroid mine, perhaps guarded by orbital
weapon platforms, make a great backdrop to an epic starship confrontation.
Micrometeoroid Cloud: Tiny pieces of debris regularly strike
a starship during space travel, bouncing off its shields and hull to no effect.
However, traveling through a large cloud of such debris can overwhelm a starship’s
conventional defenses and deal real damage. Mark hexes of micrometeoroid clouds
on the grid; the hexes should be in groups of 4 to 7, with 2 to 3 hexes of space
between them, and should take up no more than roughly a quarter of the total
grid. If a starship flies through 1 or more of these hexes, it takes damage
to its forward quadrant equal to 1d4 per micrometeoroid hex it flies through
plus 1d4 for every 2 hexes the ship moved that round in total. Damage from micrometeoroid
clouds has the ripper weapon special property. Moving clouds of micrometeoroids
can be implemented in much the same way as fast-moving asteroids (page 134)
and might even be a precursor to a larger asteroid event.
Other Debris:
Other solid objects in space such as derelict ships, ice rings, and fields of
debris from recent battles can pose similar threats to active starships. Use
whatever rules are most analogous to your chosen phenomenon.
Some areas of space are actively damaging to starships. These damaging zones
can represent hazards such as electrically charged nebulae, hull-eating bacteria,
or the chaotic corona near the surface of a star. Depending on the nature of
the damaging zone, it might encompass part or all of the combat grid, in a variety
of shapes and sizes.
At the end of each round of starship combat, all starships
in a damaging zone take damage from the hazard, distributed evenly across all
quadrants. As a crew action during the helm phase, a science officer can align
the starship’s shields to specifically protect against the active hazard (DC
= 10 + 1-1/2 × the starship’s tier), negating any damage to shielded quadrants;
quadrants with depleted shields can’t be protected in this way. In general,
damaging zones should deal at most roughly 1d6 damage per tier of the PCs’ starship
each round.
Hull-Eating Bacteria: While several massive
species have adapted to the void of space, bacteria and other microparasites
have also adapted to interstellar life by feeding off one of the most readily
available substances: starship hulls. Infestations can last for decades as the
tiny creatures feed on the remnants of derelict ships and debris fields. In
areas with hull-eating bacteria and similar threats, unshielded quadrants of
a starship’s hull each take between 1d6 and 7d6 damage per round, ignoring DT.
Once a quadrant of a ship has been exposed, it continues to take damage each
round at the end of the engineering phase, even if shields are later restored
to that quadrant. As a crew action during the engineering phase, a starship’s
engineer can vent plasma, superheat the hull, or perform a similar action to
destroy the infestation (DC = 10 + 1-1/2 × the starship’s tier).
Proton Storm: Stars can emit streams of high-intensity protons capable
of ripping starships apart. To represent a proton storm, draw multiple parallel
lines throughout the combat grid, 5 to 10 hexes long and 3 to 5 hexes apart.
Starships can fly through these marked areas, and the lines don’t block starship
attacks, though tracking weapons that would fly through a proton storm are immediately
destroyed. However, the storms represent significant danger: the protons have
such high energy that they bypass starship shields. Each time a starship flies
through or ends its movement in a marked hex, it takes damage directly to its
Hull Points equal to 1d6 + an additional 1d6 for every 2 tiers of the starship.
Star Corona: Flying near a star without specific protection
is never a good idea. If unprotected, a starship can take between 1d6 and 20d6
damage each round from the heat given off by a star’s corona, depending on the
intensity of the star and the distance to the star’s surface. Some stars also
discharge radiation that bypasses normal defenses and can affect the crew on
board (see Radiation below).
Black holes, nearby planetary bodies, unstable magical effects, and neutron
stars can create powerful gravity fields that make starship combat challenging.
Choose a side of the grid to represent the direction of the gravitational pull.
At the start of each round, move all starships, tracking weapons, mines, and
other relevant objects 1 hex closer to the source of the gravity. If an object
starts within 6 hexes of the edge, move it 2 hexes toward the edge. While a
starship is moving toward the gravitational source, each hex of movement moves
the object an additional hex. While a starship is moving away from the gravitational
source, each hex of movement costs 2 hexes instead. Tracking weapons follow
the same rules for starships and have their effective speed ratings doubled
or halved, as appropriate.
Starships that move past the edge of the grid
where the gravitational pull originates are out of the combat and might be destroyed
or disabled, crash-land, or something similar. A ship removed from the grid
by a black hole is almost certainly destroyed, for instance, while a starship
pulled toward a planetary body might crash on its surface or even burn up in
any extant atmosphere.
For especially strong gravitational fields, the rate
at which the hazard pulls could exceed 2 hexes per round. However, starships
with a speed of 4 can’t escape such forces, even with a successful divert crew
action. Generally, use gravitational pulls of 3 hexes per round or more only
if the vessels involved in the starship combat can escape the gravity field.
Space is full of background radiation from stars, space stations, manufacturing
platforms, and stellar novas from far-off star systems. Starship hulls protect
against most of this radiation, as do sealed space suits. However, more massive
cosmic events produce intense radiation capable of impacting even heavily fortified
vessels.
Radiation is most often adjudicated like a damaging zone (page 135),
but instead of dealing damage to the starship, it exposes crew members to radiation
as if the ship were hit by a weapon with the irradiate property that lists low
(for starship tiers 3 and below), medium (tiers 4–10), high (tiers 11–17), or
severe (tiers 18 and up) radiation.
Gamma Ray Burst: These
super-luminous events are some of the brightest electromagnetic phenomena known
in the universe and often are the result of a high-mass star collapsing into
a neutron star or black hole or, less frequently, occur during a nova or supernova.
The area is washed in severe radiation for 1 round, followed by an afterglow
that can that can last for several hours. Every 10 rounds, the affected space
is exposed to radiation that starts at high and degrades to medium and then
low radiation over the course of the event.
Solar Flare:
A star occasionally experiences a sudden flash of brightness near its surface,
followed by a coronal mass ejection that projects a stream of plasma and radiation
away from the star. This threat can happen anytime a starship is traveling near
a star, but it’s far more common around red dwarfs and other smaller, cooler
stars.
Represent this hazard by performing a direct-fire attack against each
starship during the gunnery phase every 1d4 rounds, originating from the star.
A solar flare typically has an attack bonus equal to 1-1/2 × the PC starship’s
tier, deals 1d12 damage per 2 tiers of the starship, and has the irradiate (high)
weapon special property. During the helm phase, a science officer can take a
crew action to analyze the star with the ship’s sensors (DC = 10 + 1-1/2 × the
starship’s tier). If successful, they’re able to predict when the next flare
will occur, granting the ship a +5 bonus to AC against the next solar flare
attack. If they perform this analysis the same round the flare erupts, the science
officer guides the pilot out of the path of the flare, avoiding the attack entirely.
Solar Storm: These eruptions of radioactive waves can cause
electric disruptions and electromagnetic interference in nearby space. When
a starship is hit by such a storm, the living occupants are exposed to medium
or high radiation. These storms typically last 2 to 8 hours and affect a large
area, exposing the entire grid to radiation for the duration of starship combat.
Some galactic effects combine gravity fields, damaging zones, and radiation,
making for very dangerous areas for a starship. However, sometimes the PCs’
goals lie in the heart of such treacherous areas of space!
Neutron
Star: The collapsed remains of a giant star can form this ultra-dense
body featuring extreme heat, gravity, and radiation. Flying near such a star
often exposes a starship to as much as 1d8 damage per round per 2 tiers of the
starship from the intense heat, high radiation, and strong gravitational pull.
This damage occurs at the end of each helm phase and is divided evenly among
the ship’s quadrants.
Pulsar: This neutron star has a very
short rotational period (from milliseconds to seconds) and emits ultra-high-energy
cosmic rays. Represent this hazard by adding a direct-fire attack every 1d4
rounds from the direction of the pulsar during the gunnery phase. A pulsar’s
ultra-high-energy cosmic ray has an attack bonus equal to 1-1/2 × the starship’s
tier, has the irradiate (severe) and vortex weapon special properties, and deals
1d12 × 10 damage; this damage increases by 1d12 × 10 per 5 tiers of the starship.
During the helm phase, a science officer can take a crew action to analyze the
pulsar with the ship’s sensors (DC = 10 + 1-1/2 × the starship’s tier). If successful,
they avoid the cosmic ray entirely that round.
Quasar: This
is an ultra-luminous active galactic nucleus. The accelerating ring of gas revolves
around a supermassive black hole, releasing energy across the entire electromagnetic
spectrum, including bright visible light. Though beautiful to behold, a quasar
is enormously dangerous; it emits high levels of radiation and heat, and its
black hole has a strong gravitational pull. If a starship approaches the galaxy’s
quasar core, use the rules for a neutron star (page 136) except it deals 10
times as much damage. Note that even the most stalwart ships could not survive
this hazard for long.
The far reaches of the galaxy contain a plethora of additional phenomena
and anomalies that can have a variety of effects on starships.
Nebula:
This large and diffuse area of gas is generally not hazardous to starships,
but depending on the exact nature of the nebula, it can cause any number of
adverse effects. Represent a nebula with 10–20 contiguous hexes. These hexes
might conceal a ship, forcing gunners to use unreliable sensor information to
target a starship inside the nebula, which gives attacks against ships in the
nebula a 20% miss chance. Alternatively, corrosive gases might eat away at the
starship (as hull-eating bacteria on page 135). Or electrical storms may have
erupted inside the nebula after being exposed to the technology of a starship,
giving the nebula an attack each round against any starships inside (as solar
flare on page 136).
Temporal Rift: Waves of tachyon particles
or damage from powerful gravitational forces can leave temporal scars in the
fabric of space-time. These areas have unpredictable effects on time and can
leave unlucky crews stranded. Mark an area 5 to 10 hexes long that varies from
1 to 3 hexes wide. When a starship begins a phase inside a temporal rift, time
shudders and shifts; roll 1d4 for each crew member when they attempt an action.
On a roll of a 1, they lose their action for this round. On a 2 or 3, they act
normally. On a 4, they can take 10 on their action.
Wormhole:
These anomalies are bridges in space-time, linking two different points in space,
two different moments in time, or a combination of the two. When a starship
flies through a wormhole, its crew often experiences flying through a tunnel
in a luminescent nebula. Mark 2 hexes on the grid that are linked to each other;
you can choose either or both locations or determine either or both at random.
Whenever a starship enters one of these hexes, it immediately enters the wormhole;
remove it from the combat grid. On the next round of starship combat during
the helm phase, when it is that starship’s turn to move, it first appears in
the linked hex with a random facing.
In addition to the effects listed above, even stranger events can manifest
in the Drift. Temporal rifts, wormholes, and proton storms are relatively common
occurrences, and large sections of displaced planes often function similarly
to asteroids and debris (pages 134–135). Creatures and forces loyal to Triune
inhabit the Drift, and their intentions are often unclear; the strange encounters
that travelers experience here do little to shed light on the tripartite god’s
enigmatic plans.
Paraforan School: When crystalline paraforan
fragments (Starfinder Alien Archive 3 76) congregate into a single paraforan
in the Drift, they often follow behind starships to consume the energy given
off by Drift engines. Sometimes these fragments become overly enthusiastic and
slam into a starship while attempting to feed off its latent Drift engine energy.
At the beginning of the engineering phase, a paraforan appears in a single hex
within 2d4 hexes of a random starship. During the helm phase, the paraforan
acts last and moves at a speed of 14 with perfect maneuverability (turn 0) toward
the nearest ship with a Drift engine. During the gunnery phase, after all other
ships have acted, a paraforan adjacent to a starship can siphon that starship’s
Shield Points, reducing that quadrant’s Shield Points by 10.
If a paraforan
is targeted by a starship weapon (requiring a gunnery action but no attack roll),
or if a starship travels through a hex containing a paraforan, it immediately
disperses into paraforan fragments that occupy 3 adjacent hexes. Paraforan fragments
can’t deplete a ship’s shields, but they function as a stationary micrometeoroid
cloud (page 134) for 1d4 rounds before re-forming into a paraforan.
Planar Energy Nebula: Planar energy nebulae populate the Drift,
often dragged in with the displaced pieces of other planes. When a starship
enters a planar energy nebula, roll 1d4 to determine the effects. On a 1, the
starship is drained of half its shields in a random quadrant. On a 2, a random
system gains a critical damage condition. On a 3, the starship is spun around
and gains a new facing, determined randomly. On a 4, the starship’s shields
are replenished as if an engineer succeeded at a divert action.
Time
Eater Ganglion: This enormous colony of time eaters (Alien Archive
3 24) interlocks their tentacles together to form a massive web. The resulting
ganglion can be anywhere from 1 to 3 hexes in size and slowly drifts toward
the closest starship at a rate of 3 hexes per round at the start of the helm
phase. If a starship ever shares a space or ends its movement adjacent to a
ganglion, the time eaters attempt to grasp the ship to steal its temporal energy.
The starship’s pilot must succeed at a Piloting check (DC = 15 + 1-1/2 × the
starship’s tier) to avoid being grasped by the ganglion. If the ganglion grabs
the starship, the ship loses all its shields in a random quadrant. If that quadrant’s
shields were already depleted, the starship’s speed instead decreases by 2 for
1d4 rounds and the ganglion can move 1 additional hex for the same duration.
These effects are cumulative, to a minimum starship speed of 0 and a maximum
ganglion speed of 10 hexes, and the duration is refreshed each time a ganglion
grabs a starship. A ganglion can be targeted by starship weapons and has an
AC and TL of 15. If a ganglion takes a total of 20 damage per hex it occupies,
it disperses into individual time eaters, which are generally inconsequential
in starship combat.
Website owned by Mark von Drake. All content on this website owned by Paizo Inc. Privacy policy can be found here.
Contact: markvondrake@thehiddentruth.info